Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 3827, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360892

RESUMEN

In this work we aim to provide a quantitative method allowing the probing of the physiological status of honeybee colonies by providing them with a gentle, short, external artificial vibrational shockwave, and recording their response. The knock is provided by an external electromagnetic shaker attached to the outer wall of a hive, driven by a computer with a 0.1 s long, monochromatic vibration at 340Hz set to an amplitude that occasionally yields a mild response from the bees, recorded by an accelerometer placed in the middle of the central frame of the colony. To avoid habituation, the stimulus is supplied at randomised times, approximately every hour. The method is pioneered with a pilot study on a single colony hosted indoors, then extended onto eight outdoors colonies. The results show that we can quantitatively sense the colony's overall mobility, independently from another physiological aspect, which is phenomenologically explored. Using this, a colony that is queenless is easily discriminated from the others.


Asunto(s)
Vibración , Abejas , Animales , Proyectos Piloto
2.
Sci Rep ; 10(1): 9798, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546693

RESUMEN

In this work, we disclose a non-invasive method for the monitoring and predicting of the swarming process within honeybee colonies, using vibro-acoustic information. Two machine learning algorithms are presented for the prediction of swarming, based on vibration data recorded using accelerometers placed in the heart of honeybee hives. Both algorithms successfully discriminate between colonies intending and not intending to swarm with a high degree of accuracy, over 90% for each method, with successful swarming prediction up to 30 days prior to the event. We show that instantaneous vibrational spectra predict the swarming within the swarming season only, and that this limitation can be lifted provided that the history of the evolution of the spectra is accounted for. We also disclose queen toots and quacks, showing statistics of the occurrence of queen pipes over the entire swarming season. From this we were able to determine that (1) tooting always precedes quacking, (2) under natural conditions there is a 4 to 7 day period without queen tooting following the exit of the primary swarm, and (3) human intervention, such as queen clipping and the opening of a hive, causes strong interferences with important mechanisms for the prevention of simultaneous rival queen emergence.


Asunto(s)
Abejas , Conducta Animal , Vibración , Animales , Estaciones del Año , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...